Trainer¶
This module provides classes and methods to facilitate the configuration, data handling, training, and evaluation of machine learning models using PyTorch and OpenML datasets. The functionalities include: - Generation of default configurations for models. - Handling of image and tabular data. - Training and evaluating machine learning models. - Exporting trained models to ONNX format. - Managing data transformations and loaders.
This module provides classes and methods to facilitate the configuration, data handling, training, and evaluation of machine learning models using PyTorch and OpenML datasets. The functionalities include: - Generation of default configurations for models. - Handling of image and tabular data. - Training and evaluating machine learning models. - Exporting trained models to ONNX format. - Managing data transformations and loaders.
BaseDataHandler
¶
BaseDataHandler class is an abstract base class for data handling operations.
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
DataContainer
¶
class DataContainer: A class to contain the training, validation, and test data loaders. This just makes it easier to access them when required.
Attributes:
train_dl: DataLoader object for the training data.
valid_dl: DataLoader object for the validation data.
test_dl: Optional DataLoader object for the test data.
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
DefaultConfigGenerator
¶
DefaultConfigGenerator class provides various methods to generate default configurations.
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
get_device()
¶
Checks if a GPU is available and returns the device to be used for training (cuda, mps or cpu)
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
return_data_config()
¶
Returns a configuration object for the data
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
return_model_config()
¶
Returns a configuration object for the model
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
OpenMLImageHandler
¶
Bases: BaseDataHandler
OpenMLImageHandler is a class that extends BaseDataHandler to handle image data from OpenML datasets.
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
OpenMLTabularHandler
¶
Bases: BaseDataHandler
OpenMLTabularHandler is a class that extends BaseDataHandler to handle tabular data from OpenML datasets.
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
OpenMLTrainerModule
¶
Source code in temp_dir/pytorch/openml_pytorch/trainer.py
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
convert_to_rgb(image)
¶
Converts an image to RGB mode if it is not already in that mode.
Parameters: image (PIL.Image): The image to be converted.
Returns: PIL.Image: The converted image in RGB mode.