functions
__list_evaluations(api_call, output_format='object')
¶
Helper function to parse API calls which are lists of runs
Source code in openml/evaluations/functions.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
list_estimation_procedures()
¶
Return list of evaluation procedures available.
The function performs an API call to retrieve the entire list of evaluation procedures' names that are available.
Returns:
Type | Description |
---|---|
list
|
|
Source code in openml/evaluations/functions.py
list_evaluation_measures()
¶
Return list of evaluation measures available.
The function performs an API call to retrieve the entire list of evaluation measures that are available.
Returns:
Type | Description |
---|---|
list
|
|
Source code in openml/evaluations/functions.py
list_evaluations(function, offset=None, size=10000, tasks=None, setups=None, flows=None, runs=None, uploaders=None, tag=None, study=None, per_fold=None, sort_order=None, output_format='object')
¶
List all run-evaluation pairs matching all of the given filters. (Supports large amount of results)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function
|
str
|
the evaluation function. e.g., predictive_accuracy |
required |
offset
|
int
|
the number of runs to skip, starting from the first |
None
|
size
|
int
|
The maximum number of runs to show.
If set to |
10000
|
tasks
|
list[int, str]
|
the list of task IDs |
None
|
setups
|
list[str | int] | None
|
the list of setup IDs |
None
|
flows
|
list[int, str]
|
the list of flow IDs |
None
|
runs
|
list[str | int] | None
|
the list of run IDs |
None
|
uploaders
|
list[int, str]
|
the list of uploader IDs |
None
|
tag
|
str
|
filter evaluation based on given tag |
None
|
study
|
int
|
|
None
|
per_fold
|
bool
|
|
None
|
sort_order
|
str
|
order of sorting evaluations, ascending ("asc") or descending ("desc") |
None
|
output_format
|
Literal['object', 'dict', 'dataframe']
|
The parameter decides the format of the output. - If 'object' the output is a dict of OpenMLEvaluation objects - If 'dict' the output is a dict of dict - If 'dataframe' the output is a pandas DataFrame |
'object'
|
Returns:
Type | Description |
---|---|
dict or dataframe
|
|
Source code in openml/evaluations/functions.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
list_evaluations_setups(function, offset=None, size=None, tasks=None, setups=None, flows=None, runs=None, uploaders=None, tag=None, per_fold=None, sort_order=None, output_format='dataframe', parameters_in_separate_columns=False)
¶
List all run-evaluation pairs matching all of the given filters and their hyperparameter settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function
|
str
|
the evaluation function. e.g., predictive_accuracy |
required |
offset
|
int
|
the number of runs to skip, starting from the first |
None
|
size
|
int
|
the maximum number of runs to show |
None
|
tasks
|
list[int]
|
the list of task IDs |
None
|
setups
|
list | None
|
the list of setup IDs |
None
|
flows
|
list[int]
|
the list of flow IDs |
None
|
runs
|
list[int]
|
the list of run IDs |
None
|
uploaders
|
list[int]
|
the list of uploader IDs |
None
|
tag
|
str
|
filter evaluation based on given tag |
None
|
per_fold
|
bool
|
|
None
|
sort_order
|
str
|
order of sorting evaluations, ascending ("asc") or descending ("desc") |
None
|
output_format
|
str
|
The parameter decides the format of the output. - If 'dict' the output is a dict of dict - If 'dataframe' the output is a pandas DataFrame |
'dataframe'
|
parameters_in_separate_columns
|
bool
|
Returns hyperparameters in separate columns if set to True. Valid only for a single flow |
False
|
Returns:
Type | Description |
---|---|
dict or dataframe with hyperparameter settings as a list of tuples.
|
|
Source code in openml/evaluations/functions.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
|