runs
OpenMLRun
¶
Bases: OpenMLBase
OpenML Run: result of running a model on an OpenML dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
int
|
The ID of the OpenML task associated with the run. |
required |
flow_id
|
int | None
|
The ID of the OpenML flow associated with the run. |
required |
dataset_id
|
int | None
|
The ID of the OpenML dataset used for the run. |
required |
setup_string
|
str | None
|
The setup string of the run. |
None
|
output_files
|
dict[str, int] | None
|
Specifies where each related file can be found. |
None
|
setup_id
|
int | None
|
An integer representing the ID of the setup used for the run. |
None
|
tags
|
list[str] | None
|
Representing the tags associated with the run. |
None
|
uploader
|
int | None
|
User ID of the uploader. |
None
|
uploader_name
|
str | None
|
The name of the person who uploaded the run. |
None
|
evaluations
|
dict | None
|
Representing the evaluations of the run. |
None
|
fold_evaluations
|
dict | None
|
The evaluations of the run for each fold. |
None
|
sample_evaluations
|
dict | None
|
The evaluations of the run for each sample. |
None
|
data_content
|
list[list] | None
|
The predictions generated from executing this run. |
None
|
trace
|
OpenMLRunTrace | None
|
The trace containing information on internal model evaluations of this run. |
None
|
model
|
object | None
|
The untrained model that was evaluated in the run. |
None
|
task_type
|
str | None
|
The type of the OpenML task associated with the run. |
None
|
task_evaluation_measure
|
str | None
|
The evaluation measure used for the task. |
None
|
flow_name
|
str | None
|
The name of the OpenML flow associated with the run. |
None
|
parameter_settings
|
list[dict[str, Any]] | None
|
Representing the parameter settings used for the run. |
None
|
predictions_url
|
str | None
|
The URL of the predictions file. |
None
|
task
|
OpenMLTask | None
|
An instance of the OpenMLTask class, representing the OpenML task associated with the run. |
None
|
flow
|
OpenMLFlow | None
|
An instance of the OpenMLFlow class, representing the OpenML flow associated with the run. |
None
|
run_id
|
int | None
|
The ID of the run. |
None
|
description_text
|
str | None
|
Description text to add to the predictions file. If left None, is set to the time the arff file is generated. |
None
|
run_details
|
str | None
|
Description of the run stored in the run meta-data. |
None
|
Source code in openml/runs/run.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
|
id: int | None
property
¶
The ID of the run, None if not uploaded to the server yet.
predictions: pd.DataFrame
property
¶
Return a DataFrame with predictions for this run
from_filesystem(directory, expect_model=True)
classmethod
¶
The inverse of the to_filesystem method. Instantiates an OpenMLRun object based on files stored on the file system.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory
|
str
|
a path leading to the folder where the results are stored |
required |
expect_model
|
bool
|
if True, it requires the model pickle to be present, and an error will be thrown if not. Otherwise, the model might or might not be present. |
True
|
Returns:
Name | Type | Description |
---|---|---|
run |
OpenMLRun
|
the re-instantiated run object |
Source code in openml/runs/run.py
get_metric_fn(sklearn_fn, kwargs=None)
¶
Calculates metric scores based on predicted values. Assumes the run has been executed locally (and contains run_data). Furthermore, it assumes that the 'correct' or 'truth' attribute is specified in the arff (which is an optional field, but always the case for openml-python runs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sklearn_fn
|
function
|
a function pointer to a sklearn function that
accepts |
required |
kwargs
|
dict
|
kwargs for the function |
None
|
Returns:
Name | Type | Description |
---|---|---|
scores |
ndarray of scores of length num_folds * num_repeats
|
metric results |
Source code in openml/runs/run.py
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
|
to_filesystem(directory, store_model=True)
¶
The inverse of the from_filesystem method. Serializes a run on the filesystem, to be uploaded later.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory
|
str
|
a path leading to the folder where the results will be stored. Should be empty |
required |
store_model
|
(bool, optional(default=True))
|
if True, a model will be pickled as well. As this is the most storage expensive part, it is often desirable to not store the model. |
True
|
Source code in openml/runs/run.py
OpenMLRunTrace
¶
OpenML Run Trace: parsed output from Run Trace call
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
OpenML run id. |
required |
trace_iterations
|
dict
|
Mapping from key |
required |
Source code in openml/runs/trace.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
|
__init__(run_id, trace_iterations)
¶
Object to hold the trace content of a run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
Id for which the trace content is to be stored. |
required |
trace_iterations
|
List[List]
|
The trace content obtained by running a flow on a task. |
required |
Source code in openml/runs/trace.py
generate(attributes, content)
classmethod
¶
Generates an OpenMLRunTrace.
Generates the trace object from the attributes and content extracted while running the underlying flow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
attributes
|
list
|
List of tuples describing the arff attributes. |
required |
content
|
list
|
List of lists containing information about the individual tuning runs. |
required |
Returns:
Type | Description |
---|---|
OpenMLRunTrace
|
|
Source code in openml/runs/trace.py
get_selected_iteration(fold, repeat)
¶
Returns the trace iteration that was marked as selected. In case multiple are marked as selected (should not happen) the first of these is returned
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fold
|
int
|
|
required |
repeat
|
int
|
|
required |
Returns:
Type | Description |
---|---|
int
|
The trace iteration from the given fold and repeat that was selected as the best iteration by the search procedure |
Source code in openml/runs/trace.py
merge_traces(traces)
classmethod
¶
Merge multiple traces into a single trace.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls
|
type
|
Type of the trace object to be created. |
required |
traces
|
List[OpenMLRunTrace]
|
List of traces to merge. |
required |
Returns:
Type | Description |
---|---|
OpenMLRunTrace
|
A trace object representing the merged traces. |
Raises:
Type | Description |
---|---|
ValueError
|
If the parameters in the iterations of the traces being merged are not equal. If a key (repeat, fold, iteration) is encountered twice while merging the traces. |
Source code in openml/runs/trace.py
trace_from_arff(arff_obj)
classmethod
¶
Generate trace from arff trace.
Creates a trace file from arff object (for example, generated by a local run).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
arff_obj
|
dict
|
LIAC arff obj, dict containing attributes, relation, data. |
required |
Returns:
Type | Description |
---|---|
OpenMLRunTrace
|
|
Source code in openml/runs/trace.py
trace_from_xml(xml)
classmethod
¶
Generate trace from xml.
Creates a trace file from the xml description.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xml
|
string | file-like object
|
An xml description that can be either a |
required |
Returns:
Name | Type | Description |
---|---|---|
run |
OpenMLRunTrace
|
Object containing the run id and a dict containing the trace iterations. |
Source code in openml/runs/trace.py
trace_to_arff()
¶
Generate the arff dictionary for uploading predictions to the server.
Uses the trace object to generate an arff dictionary representation.
Returns:
Name | Type | Description |
---|---|---|
arff_dict |
dict
|
Dictionary representation of the ARFF file that will be uploaded. Contains information about the optimization trace. |
Source code in openml/runs/trace.py
OpenMLTraceIteration
dataclass
¶
OpenML Trace Iteration: parsed output from Run Trace call
Exactly one of setup_string
or parameters
must be provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
repeat
|
int
|
repeat number (in case of no repeats: 0) |
required |
fold
|
int
|
fold number (in case of no folds: 0) |
required |
iteration
|
int
|
iteration number of optimization procedure |
required |
setup_string
|
str
|
json string representing the parameters
If not provided, |
None
|
evaluation
|
double
|
The evaluation that was awarded to this trace iteration. Measure is defined by the task |
required |
selected
|
bool
|
Whether this was the best of all iterations, and hence selected for making predictions. Per fold/repeat there should be only one iteration selected |
required |
parameters
|
OrderedDict
|
Dictionary specifying parameter names and their values.
If not provided, |
None
|
Source code in openml/runs/trace.py
get_parameters()
¶
Get the parameters of this trace iteration.
Source code in openml/runs/trace.py
delete_run(run_id)
¶
Delete run with id run_id
from the OpenML server.
You can only delete runs which you uploaded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
OpenML id of the run |
required |
Returns:
Type | Description |
---|---|
bool
|
True if the deletion was successful. False otherwise. |
Source code in openml/runs/functions.py
get_run(run_id, ignore_cache=False)
¶
Gets run corresponding to run_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
|
required |
ignore_cache
|
bool
|
Whether to ignore the cache. If |
False
|
ignore_cache
|
bool
|
|
False
|
Returns:
Name | Type | Description |
---|---|---|
run |
OpenMLRun
|
Run corresponding to ID, fetched from the server. |
Source code in openml/runs/functions.py
get_run_trace(run_id)
¶
Get the optimization trace object for a given run id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
|
required |
Returns:
Type | Description |
---|---|
OpenMLTrace
|
|
Source code in openml/runs/functions.py
get_runs(run_ids)
¶
Gets all runs in run_ids list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_ids
|
list of ints
|
|
required |
Returns:
Name | Type | Description |
---|---|---|
runs |
list of OpenMLRun
|
List of runs corresponding to IDs, fetched from the server. |
Source code in openml/runs/functions.py
initialize_model_from_run(run_id)
¶
Initialized a model based on a run_id (i.e., using the exact same parameter settings)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
The Openml run_id |
required |
Returns:
Type | Description |
---|---|
model
|
|
Source code in openml/runs/functions.py
initialize_model_from_trace(run_id, repeat, fold, iteration=None)
¶
Initialize a model based on the parameters that were set by an optimization procedure (i.e., using the exact same parameter settings)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
int
|
The Openml run_id. Should contain a trace file, otherwise a OpenMLServerException is raised |
required |
repeat
|
int
|
The repeat nr (column in trace file) |
required |
fold
|
int
|
The fold nr (column in trace file) |
required |
iteration
|
int
|
The iteration nr (column in trace file). If None, the best (selected) iteration will be searched (slow), according to the selection criteria implemented in OpenMLRunTrace.get_selected_iteration |
None
|
Returns:
Type | Description |
---|---|
model
|
|
Source code in openml/runs/functions.py
list_runs(offset=None, size=None, id=None, task=None, setup=None, flow=None, uploader=None, tag=None, study=None, display_errors=False, output_format='dict', **kwargs)
¶
List all runs matching all of the given filters. (Supports large amount of results)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
offset
|
int
|
the number of runs to skip, starting from the first |
None
|
size
|
int
|
the maximum number of runs to show |
None
|
id
|
list
|
|
None
|
task
|
list
|
|
None
|
setup
|
list | None
|
|
None
|
flow
|
list
|
|
None
|
uploader
|
list
|
|
None
|
tag
|
str
|
|
None
|
study
|
int
|
|
None
|
display_errors
|
(bool, optional(default=None))
|
Whether to list runs which have an error (for example a missing prediction file). |
False
|
output_format
|
Literal['dict', 'dataframe']
|
The parameter decides the format of the output. - If 'dict' the output is a dict of dict - If 'dataframe' the output is a pandas DataFrame |
'dict'
|
kwargs
|
dict
|
Legal filter operators: task_type. |
{}
|
Returns:
Type | Description |
---|---|
dict of dicts, or dataframe
|
|
Source code in openml/runs/functions.py
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 |
|
run_exists(task_id, setup_id)
¶
Checks whether a task/setup combination is already present on the server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
int
|
|
required |
setup_id
|
int
|
|
required |
Returns:
Type | Description |
---|---|
Set run ids for runs where flow setup_id was run on task_id. Empty
|
set if it wasn't run yet. |
Source code in openml/runs/functions.py
run_flow_on_task(flow, task, avoid_duplicate_runs=True, flow_tags=None, seed=None, add_local_measures=True, upload_flow=False, dataset_format='dataframe', n_jobs=None)
¶
Run the model provided by the flow on the dataset defined by task.
Takes the flow and repeat information into account. The Flow may optionally be published.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flow
|
OpenMLFlow
|
A flow wraps a machine learning model together with relevant information. The model has a function fit(X,Y) and predict(X), all supervised estimators of scikit learn follow this definition of a model (https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html) |
required |
task
|
OpenMLTask
|
Task to perform. This may be an OpenMLFlow instead if the first argument is an OpenMLTask. |
required |
avoid_duplicate_runs
|
(bool, optional(default=True))
|
If True, the run will throw an error if the setup/task combination is already present on the server. This feature requires an internet connection. |
True
|
avoid_duplicate_runs
|
(bool, optional(default=True))
|
If True, the run will throw an error if the setup/task combination is already present on the server. This feature requires an internet connection. |
True
|
flow_tags
|
(List[str], optional(default=None))
|
A list of tags that the flow should have at creation. |
None
|
seed
|
int | None
|
Models that are not seeded will get this seed. |
None
|
add_local_measures
|
(bool, optional(default=True))
|
Determines whether to calculate a set of evaluation measures locally, to later verify server behaviour. |
True
|
upload_flow
|
bool(default=False)
|
If True, upload the flow to OpenML if it does not exist yet. If False, do not upload the flow to OpenML. |
False
|
dataset_format
|
str(default='dataframe')
|
If 'array', the dataset is passed to the model as a numpy array. If 'dataframe', the dataset is passed to the model as a pandas dataframe. |
'dataframe'
|
n_jobs
|
int(default=None)
|
The number of processes/threads to distribute the evaluation asynchronously.
If |
None
|
Returns:
Name | Type | Description |
---|---|---|
run |
OpenMLRun
|
Result of the run. |
Source code in openml/runs/functions.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
run_model_on_task(model, task, avoid_duplicate_runs=True, flow_tags=None, seed=None, add_local_measures=True, upload_flow=False, return_flow=False, dataset_format='dataframe', n_jobs=None)
¶
Run the model on the dataset defined by the task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
sklearn model
|
A model which has a function fit(X,Y) and predict(X), all supervised estimators of scikit learn follow this definition of a model (https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html) |
required |
task
|
OpenMLTask or int or str
|
Task to perform or Task id. This may be a model instead if the first argument is an OpenMLTask. |
required |
avoid_duplicate_runs
|
(bool, optional(default=True))
|
If True, the run will throw an error if the setup/task combination is already present on the server. This feature requires an internet connection. |
True
|
flow_tags
|
(List[str], optional(default=None))
|
A list of tags that the flow should have at creation. |
None
|
seed
|
int | None
|
Models that are not seeded will get this seed. |
None
|
add_local_measures
|
(bool, optional(default=True))
|
Determines whether to calculate a set of evaluation measures locally, to later verify server behaviour. |
True
|
upload_flow
|
bool(default=False)
|
If True, upload the flow to OpenML if it does not exist yet. If False, do not upload the flow to OpenML. |
False
|
return_flow
|
bool(default=False)
|
If True, returns the OpenMLFlow generated from the model in addition to the OpenMLRun. |
False
|
dataset_format
|
str(default='dataframe')
|
If 'array', the dataset is passed to the model as a numpy array. If 'dataframe', the dataset is passed to the model as a pandas dataframe. |
'dataframe'
|
n_jobs
|
int(default=None)
|
The number of processes/threads to distribute the evaluation asynchronously.
If |
None
|
Returns:
Name | Type | Description |
---|---|---|
run |
OpenMLRun
|
Result of the run. |
flow |
OpenMLFlow (optional, only if `return_flow` is True).
|
Flow generated from the model. |
Source code in openml/runs/functions.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|